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Let Z  be a finite set of basic prizes, which may include, for instance, a holiday in Malibu, a 

ticket to a rock concert, or almost any other kind of good. We will assume that: 

 

1. Every basic prize in Z is a lottery. 

2. If A and B are lotteries, then so is the prospect of getting A with probability p and B with 

probability 1-p, for every 1p0  . 

3. Nothing else is a lottery. 

 

ApB is a lottery in which the agent wins A with probability p and B with probability 1-p. Thus, 

the second condition stated above could equally well be formulated as follows: If A and B are 

lotteries, then so is ApB, for every 1p0  . Furthermore, because ApB is a lottery it follows 

that also Cq(ApB), for all 1q0   is a lottery, given that C is a lottery. And so on and so forth. 

Consider the following axioms: 

 

vNM 1 (Completeness)               BA   or A ~ B or AB    

vNM 2 (Transitivity)  If BA   and CB  , then CA    



vNM 3 (Independence) BA   if and only if BpCApC   

vNM 4 (Continuity)                     If CBA   then there exist some p and q such that 

                                                     AqCBApC   

 

Theorem.  The preference relation   satisfies vNM 1- 4 if and only if there exists a function u

that takes a lottery as its argument and returns a real number between 0 and 1, which has the 

following properties: 

 

(1) BA  if and only if )B(u>)A(u . 

(2) )B(u)p(1)A(pu=)ApB(u −+ . 

(3) For every other function u  satisfying (1)  and (2) , there are numbers 0>c  and d  such 

that duc=u + . 

 

The von Neumann-Morgenstern theorem is an if-and-only-if claim, so we have to prove both 

directions of the biconditional. We first show that the axioms entail the existence part of the 

theorem, saying that there exists a utility function satisfying (1) and (2). In the second part of the 

proof, the uniqueness part, we prove that the utility function is unique in the sense articulated in 

(3). Finally, in the third part, we prove that if we have a utility function with properties (1)–(3) 

then the four axioms all hold true. 

 

Part One 

Let us start by constructing the utility function u mentioned in the theorem. Because Z is a finite 

set of basic prizes the completeness axiom entails that Z will contain some optimal element O 



and some worst element W. This means that O is preferred to or equally as good as every other 

element in Z, and every element in Z is preferred to or equally as good as W. Furthermore, O and 

W will also be the optimal and worst elements in all probabilistic mixtures of Z, i.e. in the set of 

all possible lotteries. This follows from the independence axiom. To grasp why, let A be an 

arbitrary non-optimal element of Z such that AO  . Then, by independence, it follows that 

ApCOpC  , no matter what C is. Hence, ApOOpO  , and because OpO is just an alternative 

way of representing O, it follows that ApOO  , and this holds for every p. Hence, if we start 

from an optimal basic prize O, we can never construct any lottery comprising any other non-

optimal basic prize A that is strictly preferred to O; this insight can be immediately generalised 

to hold for any combination of basic prizes.  

We now stipulate that: 

 

(i)  u(O) = 1 and u(A) = 1 for every A ~ O 

(ii) u(W) = 0 and u(A) = 0 for every A ~ W. 

 

The next step is to define utilities for all lotteries A between O and W, i.e. for all lotteries that are 

neither optimal nor worst-case. The continuity axiom entails that for every A, there exists some p 

such that  

 

(iii) A ~ OpW 

 



Now, if there is only one such number p we could stipulate that u(A) = p, for every A, OA

W. In order to see that there is in fact only one p satisfying relation (iii) for every A, suppose for 

reductio that there is some other such number pr   such that  

 

(iv) A ~ OrW 

 

From (iii) and (iv) it follows, by transitivity, that OpW ~ OrW. Now, there are two cases to 

consider, viz. p > r and r> p. First suppose that p > r. OpW and OrW can be represented as in 

table 1.  

 

 r p-r 1-p 

OpW O O W 

OrW O W W 

 

Table 1. 

 

By applying the independence axiom from right to left, i.e. by deleting the rightmost column, we 

find that there exists some probability s > 0 (never mind what it is) such that O ~ OsW. 

However, we showed above that it holds for every p that ApOO   given that O A; hence, 

OsWO  and we have a contradiction. The analogous contradiction arises if we assume that r > 

q. 

We have now shown that there exists a function u that assigns a number between 0 and 1 

to every lottery, such that u(O) = 1, u(w) = 0, and for every other A O, W, u(A) = p iff A ~ 



OpW. The next step is to verify that the utility function we have constructed satisfies properties 

(1) and (2). We start with (1), i.e. the claim that  

 

(v) BA   if and only if u(A) > u(B).  

 

We prove both directions of the biconditional simultaneously. By stipulation u(A) = p iff A ~ 

OpW, so it therefore holds that A ~ Ou(A)W. For the same reason, B ~ Ou(B)W. Hence, BA 

iff Ou(A)W   Ou(B)W. By applying the independence axiom it follows that BA  iff u(A) > 

u(B). To see this, first suppose that u(A) = u(B). It then follows that Ou(A)W   Ou(A)W, and 

by the independence axiom we have OO  , which violates the asymmetry condition derived 

from the completeness and transitivity axioms above. Next suppose that u(A) < u(B). This is also 

inconsistent with the observation that BA  iff Ou(A)W   Ou(B)W. To see this, we repeat a 

manoeuvre that should be familiar by now. Please take a look at table 2. 

 

 

 u(A) u(B)-u(A) 1-u(B) 

Ou(A)W O W W 

Ou(B)W O O W 

 

Table 2. 

 

The headings of each column denote probabilities, not utilities. Because of the independence 

axiom, the rightmost column can be deleted. It then follows that there is some probability s > 0 



(never mind what it is) such that OsW   O. However, it was shown above that ApOO   for all 

p and A, which means that OsWO  , and we have a contradiction. 

We shall now verify property (2) of the utility function, i.e. we wish to show that  

 

(vi) )B(u)p(1)A(pu=)ApB(u −+   

 

To start with, note that the independence axiom in conjunction with the ordering axiom 

guarantees that A ~ B iff ApC ~ BpC. (Because if A ~ B then neither BpCApC   nor 

ApCBpC   can hold, so it has to be the case that ApC ~ BpC; the proof of the other direction of 

the biconditional is analogous.) It follows that 

 

(vii) If A ~ BpC, then  

AqD ~ (BpC)qD, and  

DqA ~ Dq(BpC). 

 

Recall that because of the way we constructed the utility function it holds by definition that:  

 

A ~ Ou(A)W 

B ~ Ou(B)W 

ApB ~ Ou(ApB)W 

 

Hence, by substituting Ou(A)W for A and Ou(B)W for B we get 

 



(viii) ApB ~ Ou([Ou(A)W]p[Ou(B)W])W 

 

This expression might look a bit complicated, but it can fortunately be reduced to a lottery 

comprising only basic prizes. This is because we assumed that the probability calculus applies to 

lotteries, i.e. that if pq + (1-p)r = s, then (AqB)p(ArB) ~ AsB. Hence, 

Ou([Ou(A)W]p[Ou(B)W])W ~ OsW, where s = pu(A) + (1-p)u(B). Because of transitivity, ApB 

~ OsW, which entails that 

 

(ix) Ou(ApB)W ~ OsW 

 

Hence, 

 

(x) Ou(ApB)W ~ O[pu(A) + (1-p)u(B)]W   

 

By eliminating the probabilities connecting O and W we get 

 

(xi) u(ApB) = pu(A) + (1-p)u(B) 

 

This complets Part One of the proof. 

 

Part Two 

The aim of Part Two is to show that for every other function u  satisfying (1)  and (2) , there 

exist numbers 0>c  and d  such that dxucxu + )(=)( . It is worth keeping in mind that u and 



u  are two different utility scales assigning numbers to the same set of objects, and that we 

already know the value of each object on the u scale. Thus, let t be a function that transforms the 

u scale into the u  scale. The transformation performed by t can be conceived of as a two-step 

process: For every number x on the u scale, t first picks a lottery A such that u(A) = x, i.e. u-1(x) 

= A. Then, in the second step, t assigns a new real number y = u (A) to lottery A. So, by 

definition 

 

(xii) t(x) = u [u-1(x)] = y 

 

Suppose that i and j are two arbitrary numbers on the u scale such that i  j, and note that for 

every k, 0k1  , it holds that i  ki + (1 - k)j   j. This means that the number ki + (1 - k)j is 

also on the u scale. Hence, by substitution 

 

(xiii) t(ki + (1 - k)j) = u [u-1(ki + (1 - k)j)] = y 

 

Now, note that u-1[(ki + (1 - k)j)] is a lottery according to the definition above, and the utility of 

this lottery is ki + (1 - k)j. Because i and j are also numbers on the u scale, these utilities also 

correspond to some lotteries, A and B, respectively, so i = u(A) and j = u(B). Hence, 

 

(xiv) t(ki + (1 - k)j) = u [u-1(ku(A) + (1 - k)u(B))]  

 

Because of property (2) of the theorem, it follows that  

 



(xv) t(ki + (1 - k)j) = u (AkB) 

 

From Part One we know that u  also satisfies (2). Hence, t(ki + (1 - k)j) = k u (A) + (1-k) u (B), 

from which it follows that  

 

(xvi) t(ki + (1 - k)j) = k u (A) + (1-k) u (B) 

 

We noted above that i = u(A) and j = u(B), and it follows from this that t(i) = u (A) and t(j) = u

(B). By inserting this into equation (xvi), we get 

 

(xvii) t(ki + (1 - k)j) = kt(i) + (1-k)t(j)  

 

Now, u (x) = t[u(x)], and the right-hand side of this can be rewritten as u (x) = t(u(x)1 + [1 – 

u(x)]0). By applying this to equation (xvii) we get 

 

(xviii) u (x) = u(x)t(1) + [1-u(x)]t(0) = u(x)[t(1) - t(0)] + t(0) 

 

Now we are almost done. We stipulate that c = t(1) - t(0) and that d = t(0), because we thereby 

get u (x) = cu(x)+ d. All that remains to show is that c > 0. This is equivalent to showing that 

t(1) > t(0). By definition, t(1) = u (u-1(1)) = u (O), and t(0) = u (u-1(0)) = u (W). Because O

W, it follows from property (1) of the theorem that u (O) > u (W). 

 

 



Part Three 

The aim of this part is to show that if we have a utility function that satisfies (1)–(3), then the 

four axioms hold true. Property (1) directly entails the completeness axiom. If u(A) > u(B), then 

A   B, and if u(B) > u(A) then B   A, and if u(A) = u(B) then A ~ B. Property (1) also entails 

the transitivity axiom. If u(A) > u(B) and u(B) > u(C), then u(A) > u(C). Hence, if A   B and B 

  C, then A   C. To verify the independence axiom, holding that BA   iff BpCApC  , we 

need to use property (2), i.e. the fact that )B(u)p(1)A(pu=)ApB(u −+ . Because u(ApC) = 

pu(A) + (1 - p)u(C) and u(BpC) = pu(B) + (1 - p)u(C), all we have to show is that 

 

(xix) u(A) > u(B) if and only if pu(A) + (1 - p)u(C) > pu(B) + (1 - p)u(C) 

 


